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ABSTRACT

Alzheimer’s disease (AD) is a progressive and relentless debilitating neurodegenerative 
disease. A post-mortem microscopic neuropathological examination of the brain revealed 
the existence of extracellular β-amyloid plaques and intracellular neurofibrillary tangles. 
An accurate early diagnosis of AD is difficult because various disorders share the initial 
symptoms of the disease. Based on system biology, the multi-omics approach captures 
and integrates information from genomics, transcriptomics, proteomics, cytokinomics, 
and metabolomics. This study developed an AD prediction model based on the integrated 

blood-based multi-omics dataset involving 
32 AD patients and 15 non-AD subjects. The 
integrated multi-omics dataset consists of 16 
transcript genes, 14 metabolites, and nine 
cytokines. Due to the complete separation 
and multicollinearity issues, Firth’s logistic 
regression model was then developed to 
predict AD using the principal components. 
The model revealed 18 potential biomarkers 
of AD, consisting of seven metabolites, two 
transcriptomes, and nine cytokines. These 
potential biomarkers show an upregulated 
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risk in the AD group compared to the non-AD subjects. The possibility of using these 
biomarkers as early predictors of AD is discussed.

Keywords: Alzheimer’s disease, biomarkers, complete separation, Firth’s logistic regression, multi-omics

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and debilitating disorder. Rare autosomal 
dominant mutations seem to cause the early onset of AD (EOAD) (Bertram et al., 2007; 
Cummings & Jeste, 1999; Gross et al., 2012). There is currently no treatment available to 
cure AD (Cayton et al., 2008; Ibáñez et al., 2013; Maskery et al., 2020; Von Schulze et al., 
2020). An accurate early diagnosis of AD is also difficult because initial symptoms of the 
disease are shared with a variety of disorders, which reflect common neuropathological 
features (Humpel, 2011; Minter et al., 2016). Genetic studies  provide an opportunity to 
elucidate the cause of a disease for early detection or cure (Marioni et al., 2018; Tanzi, 
2012; Waring & Rosenberg, 2008). The genetic study of AD has advanced over the last 
decade, where more than twenty independent loci or locations of genes on the chromosome 
are known to be associated with the disease, besides the well-established gene, APOE 
(Marioni et al., 2018). Biomarkers can serve as predictors of health and disease. They 
can be used to indicate normal biological processes, abnormal pathogenic conditions, or 
pharmacological responses to therapeutic drugs (Gomez-Ramirez & Wu, 2014; Humpel, 
2011; Zhang, 2011). In the past decade, omics approaches and technologies have contributed 
to studying the metabolome, lipidome, and proteome in a complex disease such as AD 
(Clark et al., 2021; Hasin et al., 2017).

Integrative omics is a new biological research field that studies system biology, 
capturing information from genomics, transcriptomics, proteomics, metabolomics, and 
cytokinomics. For instance, transcriptomics is the full complement of messenger ribonucleic 
acid (mRNA) in a cell or tissue at any given moment. It is a form of protein synthesis 
which results in a corresponding protein complement to the proteome. It has been used to 
describe the global mRNA expression of a particular tissue, yielding information about the 
transcriptional differences between two or more states (Romero et al., 2006). In contrast, 
metabolomics aims to identify and quantify the global composition of “metabolites” of 
a biological fluid, tissue, or organism. Metabolites are small molecules (non-polymeric 
compounds) that participate in general metabolic reactions and are required for the 
maintenance, growth, and normal function of cells (Kussmann et al., 2006; Romero et al., 
2006; Zhou et al., 2014). Metabolomics is an in-depth study since the metabolic network 
is downstream from gene expression and protein synthesis, where it reflects more closely 
cell activity at a functional level (Romero et al., 2006). Cytokinomics is a large-scale study 
of small proteins commonly known as cytokines or glycoproteins produced by several 
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cell types in biological systems (Clerici, 2010). They are a group of proteins concealed 
by cells of the immune system that act as chemical messengers. Inflammation was found 
to initiate or cause the deterioration of AD neurodegeneration. Several different cytokines 
have been reported to be higher in AD patients (Park et al., 2020; Swardfager et al., 2010; 
Zheng et al., 2016). 

Multi-omics integration is important as more information is needed on the inter-
individual variations and complex biomarkers’ interrelations on AD identification and 
disease progression. There are some issues when dealing with multi-omics data, which 
are the correlated features (genes). Genes usually work in a group, are connected to other 
genes, and form a network to operate well in the human body. Thus, this would be a 
challenge in predicting the biomarkers of the disease because classical statistical methods 
usually do not tolerate correlated features (multicollinearity). For most multi-omics data 
that focus on certain disease measures, there would be a risk of a complete separation 
issue. It usually happens when the sample size of the dataset is lower than the number 
of variables. In certain diseases under study, some of the biomarkers in the multi-omics 
dataset would show a tremendous gap between cases and control groups. This condition 
would interfere with the analysis of finding other biomarkers. These conditions might 
complicate the process of data analysis since most of the standard analytical procedures 
do not focus on monotone likelihood estimation. The monotone likelihood was the effect 
of a complete separation dataset. 

Furthermore, the analysis of multi-omics data might be complicated due to existing 
conditions such as multicollinearity and complete separation issues. There are currently 
no analytical methods that can simultaneously address this condition.

Past studies have explored many methods to handle data with multicollinearity, such as 
ridge regression, partial least square regression, and principal component analysis (Adnan 
et al., 2006; Rahayu et al., 2017). According to Rougoor et al. (2000), when the number of 
observations is large, the difference in performance across the methods is often minimal. 
No one approach dominates the others.

When a complete separation issue occurs, the options to (i) increase the sample size, 
(ii) combine the category with the separation issue with a similar one (for more than 
two categories), (iii) remove the class (for more than two categories) can be considered. 
However, increasing the sample size in a clinical trial is not always feasible, and combining 
categories is not always practicable, particularly when there are only two categories, and 
each category is meant to be mutually exclusive. Finally, omitting the category may be too 
risky, as the category may be crucial to the study. The separation problem can be solved 
using Firth’s (1993) penalised MLE method and the exact logistic regression method. This 
study aims to develop an AD prediction model using Firth’s (1993) logistic regression and 
identify potential biomarkers for AD classification using an integrated blood-based multi-
omics dataset involving Malaysian patients.
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METHODOLOGY

This study utilised transcriptomics, metabolomics, and cytokinomics datasets. The datasets 
were obtained from the “Towards Useful Ageing (TUA): Neuroprotective model for healthy 
longevity among the Malaysian elderly” research programme funded by the Long-term 
Research Grant Scheme (LRGS) of the Ministry of Higher Education, Malaysia. The study 
design for the data collection was matched case-control. The study population was elderly 
patients with AD enrolled at the Memory and Geriatric Clinic of the University of Malaya 
Medical Centre (UMMC), University of Malaya, Malaysia. The control group consisted 
of the elderly without AD. 

The inclusion criteria for the multi-omics dataset were as follows; for the AD group, the 
age of patients was 65 years or more, who fulfilled the criteria of probable AD based on the 
Revised National Institute of Neurological and Communication Disorders—Alzheimer’s 
disease and Related Disorder Association, and a neurologist or geriatrician made the 
diagnosis. The additional requirement for the AD group was that the mini-mental state 
examination (MMSE) score of the subject was less than or equal to 26 (Dayana et al., 2014; 
Hasni et al., 2016). Importantly too, patients’ and/or caregivers’ consent should be obtained. 

As a start, the dataset was checked for outliers using Rosner’s method (Rosner, 
1975). Rosner’s approach was chosen because it can detect several outliers in a sample 
dataset while also reducing false positives. Then, the multi-omics dataset is assessed with 
the separation test using linear programming developed by Konis (2007). Konis (2007) 
provided a solution to measure the separation between successes and failures in the binary 
response framework. A complete separation occurs when the parameter estimate of β 
diverges to ±∞ (Heinze & Schemper, 2002). Boxplot is used to illustrate the separation 
issues in the multi-omics dataset and validate it using the linear programming method 
(Appendix - Figure S2). 

If there is a complete separation issue among the datasets, the common binary logistic 
regression is not able to fit the data because of the existence of monotone likelihood 
estimates. Firth’s (1993) logistic regression (penalized ML estimation for logistic 
regression) was suggested as a solution for this situation (Firth, 1993; Heinze & Schemper, 
2002; Kosmidis & Firth, 2010). Fundamentally, Firth’s (1993) penalized method is used 
to extract a regular probability function with a bias term that is receptive to small sample 
size and rare targets (Rahman & Sultana, 2017). Firth (1993) used the penalty term in the 
ML-based score function (Equation 1) to remove first-order bias.

     [1]

Firth’s (1993) penalized likelihood is defined as Equation 2
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     [2]

where the log of the likelihood is defined as Equation 3

   [3]

where 

[

 denotes the Fisher information matrix. Next, Firth’s (1993) penalized score 
function can be interpreted as Equation 4

  [4]

where, 

[

 is the diagonal elements in Firth’s (1993) likelihood structure of the predicted 
matrix H. The predicted matrix is defined as Equation 5

   [5]

where W is the diagonal matrix of [  and X, the regular design matrix. In 
Firth’s (1993) penalized approach, proper estimating equations are defined to lead the 
estimator to become unbiased. This approach is useful with separated data where the 
first-order bias is removed and a small sample size. Besides, the approach promises the 
point estimates to be finite even in the monotone likelihood situation when ordinary ML 
estimation does not exist (Siino et al., 2018).

In the modelling phase, the univariable Firth’s (1993) logistic regression was fitted on 
the multi-omics dataset to determine the individual biomarkers. This study has selected 
biomarkers with a p-value of less than 0.25 to fit into the multivariable Firth’s (1993) 
logistic regression model (Hosmer Jr et al., 2013).

Variable selection using forward, backward elimination and stepwise selection were 
applied to get the best AD prediction model. If each method selected different biomarkers, 
this study would suspect ill-conditioning (or multicollinearity) among the biomarkers. 

In the presence of multicollinearity, Principal Component Analysis (PCA) was 
performed to cluster the correlated biomarkers. Bartlett’s test of sphericity and Kaiser-
Meyer-Olkin (KMO) measure of sampling adequacy would be calculated to determine 
if PCA is appropriate for the data. Then, PCA with varimax rotation was performed to 
obtain the principal components (PCs) from the multi-omics dataset. The rotation was 
made to facilitate the interpretation so that each biomarker is associated with a small 
block of observed biomarkers (Acal et al., 2020). The PCs were extracted based on the 
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eigenvalue of more than 1. Based on Jackson (1993), the eigenvalue of more than one 
would cluster or group the biomarkers into (PCs). Retaining 95% of the total variance, 
on the other hand, would not yield a promising result because there is a risk that many of 
the components retained will be noise or trivial components (Jackson, 1993). The scree 
plot was used to visualise the number of PCs extracted from the PCA model. The linear 
programming method was then employed to determine if there were complete separation 
issues for the PCs. 

The multivariable Firth’s (1993) logistic regression was fitted using the PCs extracted 
from the PCA with varimax rotation. The likelihood ratio test is performed to compare 
the individual PCs from the full model fitted using all principal components in the PCA 
with varimax rotation. 

Before establishing the final model, diagnostic and influential statistic tests were 
carried out to check for outliers. The model goodness of fit tests was measured using the 
Hosmer and Lemeshow test. The classification table and area under the receiver operating 
characteristic (ROC) curve were used to evaluate the performance of the model. The model 
fitted the data when the p-value > 0.05 for the Hosmer-Lemeshow test, the classification 
rate of more than 70%, and the area under the ROC curve exceeded 0.80 (Hosmer Jr et al., 
2013). On top of that, the influential statistics were checked using the Delta Chi-Square 
( )

)
, Delta Deviance 

( )
), and Pregibon Delta Beta 

( )
)

. The 

( )
)

 and 

( )
)

 were 
based on the ninety-fifth (95th) percentile of the distribution where under m-asymptotic, 
these quantities would be distributed approximately as X2

(1) with X2
0.95(1)=3.84. The cut-off 

points to identify 

( )
)

 and 

( )
)

 were four. Whereas, for 

( )
)

 larger than one, the case 
is considered an outlier. The flowchart of all the steps taken is in Appendix–Figure S1.

RESULTS AND DISCUSSION

The multi-omics data were obtained from a study of 32 AD patients and 16 non-AD subjects, 
and there were 16 transcript genes, 14 metabolites, and nine cytokines. Data cleaning for 
the dataset was performed by detecting and rectifying outliers and influencing data points 
using the Rosner method (Rosner, 1975). Then, the separation issue was resolved using 
the linear programming method developed by Konis (2007). Table 1 confirmed that ten 
biomarkers in the dataset had a complete separation issue since the intercept and coefficient 
were infinite. For metabolomics, the biomarkers that had separation issues were tryptophan, 
N-(2-hydroxyethyl) icosanamide, phytosphingosine, N-(2-hydroxyethyl) palmitamide, 
and methacholine, while for cytokinomics, they were interleukin-1β or IL-1β, IL-6, IL-
10, IL-13, and human interferon-inducible protein 10 or IP-10. Fortunately, there were no 
biomarkers with complete separation issues from the transcriptomics group.

A univariable Firth’s (1993) logistic regression was done to select potential biomarkers 
included in the model. Out of 39 biomarkers, only nine biomarkers, namely dihydroceramide 
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C2, 3-hydroxylidocaine, 20-alpha-dihydroprogesterone glucuronides, muscle atrophy F-box 
gene (FBXO32), histone deacetylase 7 (HDAC7), interferon-induced transmembrane 
protein 3 (IFITM3), melanocortin 1 receptor (MC1R), torsin 1A interacting protein 2 
(TOR1AIP2), and vascular endothelial growth factor B (VEGFB) were not significant in 
the univariable model. The full univariable Firth’s (1993) logistic regression is presented 
in Appendix - Table S1.

In the next stage of analysis, the variable selection procedure was applied to choose 
the significant transcriptomics, metabolomics, and cytokinomics biomarkers. Not all 
non-significant biomarkers were excluded in the subsequent analysis. Only biomarkers 
with a p-value > 0.25 were excluded from the variable selection procedure. The excluded 
biomarkers were 20 alpha-dihydroprogesterone glucuronides, HDAC7, IFITM3, MC1R, 
and TOR1AIP2. The selected biomarkers are presented in Table 2.

Firth’s (1993) logistic regression with variable selection procedure (forward selection, 
backward elimination, and stepwise selection) selected tryptophan as the significant 
biomarker. The correlation among the biomarkers is then investigated, and the results 

Table 1
Biomarkers with complete separation detected using the linear programming method (p=39)

Variable Intercept Coefficient Variable Intercept Coefficient
Dihydroceramide C2 0 0 IFITM3 0 0
(Z)-N-(2-hydroxyethyl)icos-11-enamide 0 0 LY6G6D 0 0
Cholest-5-ene 0 0 MC1R 0 0
Tryptophan – ∞ ∞ MRPL18 0 0
N-(2-hydroxyethyl)icosanamide – ∞ ∞ SPOCD1 0 0
11,12-dihydroxy arachidic acid 0 0 ST14 0 0
3-hydroxylidocaine 0 0 TOR1AIP2 0 0
Phytosphingosine – ∞ ∞ TRIM16L 0 0
N-(2-hydroxyethyl)palmitamide – ∞ ∞ UBXN7 0 0
1-hexadecanoyl-sn-glycerol 0 0 VEGFB 0 0
20 alpha-dihydroprogesterone 
glucuronide

0 0 IL-1β – ∞ ∞

Methacholine ∞ – ∞ IL-6 – ∞ ∞
2-oxo-docosanoic acid 0 0 IL-12 0 0
cis-11-hexadecenal 0 0 IFN-γ 0 0
ANKRD28 0 0 IL-10 ∞ – ∞
CCDC92 0 0 IL-13 ∞ – ∞
DEFA3 0 0 IP-10 – ∞ ∞
FBXO32 0 0 MCP-1 0 0
GRIA4 0 0 MIP-1α 0 0
HDAC7 0 0 0 0
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revealed a high correlation (multicollinearity) among the biomarkers within and between 
the three omics groups. The variance inflation factor (VIF) shows 17 biomarkers having 
multicollinearity issues since the VIF is more than ten and the tolerance value is less than 
0.2. The biomarkers that have multicollinearity issues are presented in Table 3.

Thus, PCA with varimax rotation was carried out, and Bartlett’s test was significant, 
indicating that the correlation matrix is not an identity matrix [Chi-square (df): 1940.19 
(56)], p-value < 0.05. The KMO measure of sampling adequacy was 0.78 (greater than 
the threshold of 0.6) for PCA.

Table 2 
List of 34 selected biomarkers for further analysis (nAD = 32, nnon-AD = 16)

List of selected biomarkers
Dihydroceramide C2 11,12-dihydroxy arachidic acid CCDC92 ST14 IL-12

Methacholine N-(2-hydroxyethyl)palmitamide DEFA3 TRIM16L IFN-γ
Cholest-5-ene N-(2-hydroxyethyl)icosanamide FBXO32 UBXN7 IL-10
Tryptophan 1-hexadecanoyl-sn-glycerol GRIA4 VEGFB IL-13

cis-11-hexadecenal 2-oxo-docosanoic acid LY6G6D IL-1β IP-10
Phytosphingosine (Z)-N-(2-hydroxyethyl)icos-11-enamide MRPL18 IL-6 MCP-1

3-hydroxylidocaine ANKRD28 SPOCD1 MIP-1α

Table 3 
List of biomarkers that have multicollinearity issues

Biomarker VIF Tolerance
Dihydroceramide C2 15.49 0.06
(Z)-N-(2-hydroxyethyl)icos-11-enamide 14.90 0.07
Tryptophan 517.23 < 0.01
N-(2-hydroxyethyl)icosanamide 968.76 < 0.01
11,12-dihydroxy arachidic acid 18.57 0.05
Phytosphingosine 169.25 0.01
N-(2-hydroxyethyl)palmitamide 232.26 < 0.01
1-hexadecanoyl-sn-glycerol 10.78 0.09
Methacholine 42.12 0.02
CCDC92 13.95 0.07
GRIA4 10.98 0.09
MRPL18 11.26 0.09
IL-1β 32.11 0.03
IL-6 13.66 0.07
IL-10 18.69 0.05
IL-13 23.33 0.04
MCP-1 13.34 0.07
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The covariates (biomarkers) with a factor loading of 0.4 and higher (indicating 
satisfactory loading) were valid and significant contributors to the component. Based on 
the Scree plot in Figure 1, seven components had an eigenvalue > 1. It would mean that 
only seven PCs were extracted from the varimax rotation method, and the total variance 
explained by these components was 79.29%.

Figure 1. Scree plot for varimax rotation principal components

Scree plot for varimax rotation principal components (p=34)
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The first PC (PC1 with 36.89% variance explained) represents 18 biomarkers from 
metabolomics, transcriptomics, and cytokinomics. The biomarkers from PC1 were 
N-(2-hydroxyethyl) icosanamide, tryptophan, methacholine, IL-13, N-(2-hydroxyethyl) 
palmitamide, IL-1β, IL-6, IL-10, IP-10, phytosphingosine, 1-hexadecanoyl-sn-glycerol, 
monocyte chemoattractant protein 1 (MCP-1), suppressor of tumorigenicity-14 (ST14), 
IL-12, Macrophage inflammatory protein-1 alpha (MIP-1α), cis-11-hexadecenal, Interferon-
gamma (IFN-γ), and Tripartite Motif Containing 16 Like (TRIM16L). There were four 
biomarkers in the second PC or PC2 (11.17% of variance explained), namely glutamate 
ionotropic receptor AMPA type subunit 4 (GRIA4), coiled-coil domain containing 92 
(CCDC92), mitochondrial ribosomal protein L18 (MRPL18), and ultrabithorax domain-
containing protein 7 (UBXN7).

The third PC (PC3 with 10.72% of variance explained) consisted of four biomarkers: 
VEGFB, cholest-5-ene, lymphocyte antigen six family member G6D (LY6G6D) and 
dihydroceramide C2. The two biomarkers for PC4 with 5.53% variance explained were 
Spen Paralogue and Orthologue C-terminal (SPOC) domain containing 1 (SPOCD1) and 
defensin alpha 3 (DEFA3). 
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To ensure that any important PCs were 
not left out, the likelihood ratio test was 
done to examine the importance of each 
PC in the model. The likelihood ratio test 
compared the full model with 7 PCs and the 
model without the specific PCs to identify 
the crucial principal components of the full 
model. As shown in Table 6, only PC1 has 
a p-value < 0.05, meaning that PC1 is the 
most important component in Firth’s (1993) 
logistic regression model for predicting AD.

Table 4
Separation detection of factor loadings using 
linear programming (p=7)

Variable Intercept Coefficient
PC1 ∞ ∞
PC2 0 0
PC3 0 0
PC4 0 0
PC5 0 0
PC6 0 0
PC7 0 0

PC5 with 5.298% variance explained also had two biomarkers, which were FBXO32 
and ankyrin repeat domain 28 (ANKRD28). Only one biomarker, 2-oxo-docosanoic acid 
for PC6, was explained with a 4.936% variance. The last component, PC7 (4.75% of 
variance explained), consisted of two biomarkers, which were 3-hydroxylidocaine and 
11,12-dihydroxy arachidic acid. The total variance explained by the seven components 
was 79.30%.

Before fitting Firth’s (1993) logistic regression model, using rotated PCs scores, a test 
for complete separation was carried out for each of the seven principal components. Table 
4 shows the separation detection using the linear programming method, and only PC1 had 
a separation issue since the intercept and coefficient were infinity. Thus, it was acceptable 
to fit Firth’s (1993) logistic regression using the seven principal components. 

The results for multivariable Firth’s (1993) logistic regression model using seven 
principal components in Table 5 show that only PC1 was statistically significant [Wald 
statistic: 3.879, p-value < 0.001]. The adjusted odds ratio for PC1 was 10.65, which was 
the largest adjusted odds ratio compared to other PCs. 

Table 5 
Multivariable Firth’s (1993) logistic regression of 7 PCs for Alzheimer’s disease subject (nAD=32, nnon-AD=16) 

Rotated Scores s.e.b Wald Statisticc Adjusted ORd (95% CI)e p-value
PC1 2.3652 0.6098 3.88 10.65 (3.22, 35.18) <0.001
PC2 0.7450 0.5881 1.27 2.11 (0.67, 6.67) 0.2052
PC3 0.6055 0.5785 1.05 1.83 (0.59, 5.69) 0.2953
PC4 0.3596 0.5666 0.64 1.43 (0.47, 4.35) 0.5257
PC5 0.2649 0.5754 0.46 1.30 (0.42, 4.03) 0.6451
PC6 0.3577 0.5633 0.64 1.43 (0.47, 4.31) 0.5254
PC7 -0.0355 0.5426 -0.07 0.97 (0.33, 2.79) 0.9478

aRegression coefficient; bStandard error; cz-value; dAdjusted odds ratio; e95% confidence interval constant 
= 0.4663 

a
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Table 6
Likelihood ratio test of each principal component

Full model without PCs Chi-Square p-value Notes
PC1 46.98 <0.001 PC1 is important
PC2 0.81 0.3676 PC2 is not important
PC3 0.47 0.4949 PC3 is not important
PC4 0.83 0.3617 PC4 is not important
PC5 0.83 0.3629 PC5 is not important
PC6 0.80 0.3698 PC6 is not important
PC7 0.83 0.3634 PC7 is not important

Thus, the final model with PC1 represents 18 correlated biomarkers (7 metabolomics, 
2 transcriptomics, and 9 cytokinomics) related to AD. The PC1 biomarkers include: (1) 
TRIM16L and ST14 from the transcriptomics dataset, (2) seven important metabolites from 
the metabolomics dataset were N-(2-hydroxyethyl) icosanamide, tryptophan, methacholine, 
N-(2-hydroxyethyl) palmitamide, phytosphingosine, 1-hexadecanoyl-sn-glycerol, and cis-
11-hexadecenal, (3) IL-13, IL-1β, IL-6, IL-10, IP-10, MCP-1, IL-12, MIP-1α, and IFN-γ 
were the nine cytokinomics biomarkers. 

The odds ratio for PC1 in Table 7 was 189.88 due to the effect of complete separation 
between the AD and non-AD groups. Furthermore, the large odds ratio may be due to the 
small sample size and unbalanced data. The odds ratio indicates that exposure to AD is 
higher for patients with these 18 biomarkers.

Table 7 
Final model of Firth’s (1993) logistic regression (nAD = 32, nnon-AD = 16)

Rotated Scores s.e.b Wald Statisticc Crude ORd (95% CI)e p-value
PC1 5.246 1.686 3.111 189.88 (1.94, 8.55) 0.00186
aRegression coefficient    bStandard error    cz-value      dAdjusted odds ratio         e95% confidence interval 
constant = 0.4663 

The Hosmer-Lemeshow test [Chi-Square (df): 0.7439 (8), p-value > 0.05] indicates 
that the model fits the data. Since PC1 had complete separation of non-AD and AD, the 
classification rate, sensitivity, and specificity were 100%. The area under the ROC curve 
also indicated the perfect score of 1.0. 

The diagnostic and influential statistics were conducted to examine the whole set 
of covariate patterns in the final model. Based on Hosmer Jr et al. (2013), the crude 
approximation to identify the outlier for delta Chi-Square ( )

)
 and delta deviance 

( )
)

 
was based on the ninety-fifth (95th) percentile of the distribution; as under m-asymptotic, 
these quantities would be distributed approximately as X2

(1) with X2
0.95(1)=3.84. Thus, the 

cut-off points to identify the outliers for delta chi-square and delta deviance was four. 

a
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Moreover, the influential diagnostic Pregibon delta beta  larger than one for an 
individual covariate pattern highlights that it is considered as an outlier. There was no 
influential statistic in PC1 since the values of  versus  and  versus  were 
lower than 4. Furthermore, the value of Pregibon delta beta  versus  was less than 
1.0. Based on these values, there were no influential statistics in the model. Thus, the 
final Firth’s (1993) logistic model was valid and appropriate for the data with complete 
separation issues. 

Firth’s (1993) logistic regression with variable selection procedures (forward selection, 
backward elimination, and stepwise selection) selected only one significant biomarker due 
to the presence of multicollinearity among biomarkers, and ten biomarkers were found 
to have complete separation issues. PCA was used to overcome the multicollinearity 
issue, while Firth’s (1993) logistic regression was used as it is an appropriate model when 
complete separation occurs. PCA revealed seven principal components, and Firth’s (1993) 
logistic regression revealed PC1 as the dominant component. PC1 also had a complete 
separation issue (indicating that it separated the AD and non-AD groups perfectly). A total 
of 18 important biomarkers were identified from the multi-omics dataset using Firth’s 
(1993) logistic regression and PCA. There were seven metabolomics, two transcriptomics, 
and nine cytokinomics biomarkers in PC1. PC1 shows an upregulated risk in AD patients 
compared to non-AD subjects with these 18 biomarkers. To confirm the fitness of the 
model, a diagnostic and influential statistic was implemented. These potential multi-omics 
biomarkers are summarised in Table 8.

The potential biomarkers from transcriptomics were ST14 (Suppression of 
tumorigenicity) and TRIM16L (tripartite motif-containing 16 like). ST14 was found to be 
upregulated in this study. A similar finding indicating ST14 as an important upregulated 
transcriptomics biomarker of AD was found in many studies (Nazarian et al., 2020; 
Rousseaux et al., 2012; Yin et al., 2017). 

Table 8
Summary of potential multi-omics biomarkers of AD

Transcriptomics Metabolomics Cytokinomics
ST14 n-(2-hydroxyethyl)icosanamide MCP-1

TRIM16L tryptophan IL-1β
methacholine IL-13

n-(2-hydroxyethyl)palmitamide IL-6
phytosphingosine IL-10

cis-11-hexadecenal IP-10
1-hexadecanoyl-sn-glycerol IL-12

MIP-1α
IFN-γ
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The metabolomics biomarker, N-(2-hydroxyethyl) icosanamide, was found to be 
upregulated in this study. Brand et al. (2015) reported that the N-(2-hydroxyethyl) 
icosanamide  protects from neuronal death and is also involved with the inflammatory 
immune response. When the intensity of n-(2-hydroxyethyl) icosanamide increases, it 
would be an indicator for a person to develop AD potentially. 

Methacholine was also an important biomarker of AD and had an upregulated effect on 
AD in this study. In contrast, previous studies reported methacholine as a downregulated 
gene, where every increment of methacholine intensity would decrease the risk of getting 
AD (Bavarsad et al., 2020; Jang et al., 2020). More data need to be obtained to verify these 
contradictory findings on methacholine.

As for N-(2-hydroxyethyl) palmitamide, D’Agostino et al. (2012) and Kuehl et 
al. (1957) reported similar findings that the metabolite is a potential biomarker of AD. 
Phytosphingosine is an upregulated metabolite biomarker of AD (Li et al., 2018; Sun et al., 
2018; Li et al., 2010). The cis-11-hexadecenal metabolite was also reported by Berdyshev 
(2011) and was related to lipidomic disease (Kocak, 2020). Finally, the metabolomics 
biomarker, 1-hexadecanoyl-sn-glycerol was found to be upregulated for AD in this study. 
Currently, no studies have found 1-hexadecanoyl-sn-glycerol metabolite as a metabolomics 
biomarker for AD. 

In the cytokinomics group, IL-1β, IL-6, IL-13, and MIP-1α were identified as important 
cytokines biomarkers. Yin et al. (2016) reported that IL-1β and homozygous APOE4 
combined were associated with an increased hazard of developing AD. Furthermore, 
IL-1β was also reported with six accompanying pathways that linked it to AD, which are 
tumour necrosis factor (TNF-α), TGF-β, c-June N-terminal kinase (JNK), extracellular-
signal-regulated kinase (ERK), LPS, and nerve growth factor (NGF) (Xie et al., 2015). 
It was also reported that the levels of IL-6 and IFN-γ were significantly higher in altered 
T-lymphocytes of AD patients compared to the non-AD group (Azad et al., 2014). In this 
study, IFN-γ was found to have a significant relationship with AD. In addition, some studies 
have reported that the increment of IL-6 would influence the progression of the cognitive 
decline in AD (Licastro et al., 2003; Mrak & Griffin, 2005). IL-10 and IL-13 were said 
to be anti-inflammatory cytokines by their ability to suppress genes for pro-inflammatory 
cytokines (Rubio-Perez & Morillas-Ruiz, 2012). These results were in line with Dayana 
et al. (2014) and Hasni et al. (2016). 

The interferon gamma-induced protein 10 (IP-10) or C-X-C motif chemokine 10 
(CXCL-10) indicated an upregulated or elevated risk of AD. A study by Minter et al. 
(2016) supported that CXCL-10 was positively correlated with the severity of the cognitive 
decline in AD patients. Furthermore, in an animal study, CXCL-10 was implicated in the 
disease progression of APPSWE/PS1∆E9 mice where deletion of the gene ameliorated 
amyloidosis and cognitive decline (Minter et al., 2016). 
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CONCLUSION

In the presence of complete separation, the maximum likelihood estimation method in 
logistic regression will provide an infinite estimate of the covariate coefficient. Firth’s 
(1993) logistic regression uses a penalized likelihood estimation method and is the 
appropriate solution to the separation issue for logistic regression. The important biomarkers 
identified from the multi-omics dataset showed a strong correlation among transcripts, 
metabolites, and cytokine biomarkers. This study supported past findings that applied 
an integrative multi-omics approach to establish significant AD-associated biomarkers. 
Multi-omics studies may have an important role in developing the diagnosis and treatment 
of AD. Future research can explore machine learning approaches for the identification of 
biomarkers.

The novelty of the current work is developing a solution on how to deal with a dataset 
with multicollinearity among predictors and complete separation issues. The ensemble 
method of Principal Component and Firth Logistic Regression would ultimately contribute 
to the theory and practice when facing both situations simultaneously in the dataset. Until 
now, there has been no study published that deals with these two situations together.  
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APPENDIX 

Supplementary Figure 1. Flow of modelling multi-omics dataset on Alzheimer’s disease
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Supplementary Figure 2. Boxplot of ten complete separation biomarkers
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Supplementary Table 1
Univariable Firth’s (1993) logistic regression in measuring potential biomarkers association with AD 
(nAD = 32, nnon-AD = 16)

Biomarkers AD
[mean (sd)]

Non-AD
[mean (sd)]

Crude ORa

(AIC)b (95% CI)c p-valued

Dihydroceramide C2 9.23 (5.86) 0.33 (0.24) 3.91(28.86) (0.86,17.78) 0.0779
(Z)-N-(2-
hydroxyethyl)icos-
11-enamide

6.06 (3.88) 0.31 (0.21) 51.37(23.97) (1.21,2178.64) 0.0394

Cholest-5-ene 3.94 (4.12) 0.23 (0.11) 30.63(39.39) (1.17,803.11) 0.0401
Tryptophan 20.84 (0.85) 0.28 (0.14) 1.46(5.94) (1.19,1.78) 0.0002
N-(2-hydroxyethyl)
icosanamide

16.68 (0.66) 0.36 (0.35) 1.61(5.94) (1.25,2.07) 0.0002

11,12-dihydroxy 
arachidic acid

5.50 (4.99) 0.27 (0.18) 185.51(30.29) (2.85,12093.79) 0.0143

3-hydroxylidocaine 0.37 (0.27) 0.27 (0.18) 5.65(63.05) (0.4,79.98) 0.2002
Phytosphingosine 13.14 (2.47) 0.32 (0.22) 1.99(6.09) (1.33,2.98) 0.0009
N-(2-hydroxyethyl)
palmitamide

15.28 (1.49) 0.35 (0.23) 1.7(5.98) (1.27,2.27) 0.0003

1-hexadecanoyl-sn-
glycerol

17.48 (0.72) 5.63 (5.05) 2.3(14.91) (1.26,4.2) 0.0068

20 alpha-
dihydroprogesterone 
glucuronide

0.57 (0.49) 0.48 (0.31) 1.56(64.64) (0.38,6.38) 0.5367

Methacholine 1.96 (1.46) 13.65 (1.64) 0.47(6.21) (0.3,0.74) 0.0011
2-oxo-docosanoic 
acid

1.22 (1.01) 0.27 (0.18) 10.73(48.1) (1.54,74.69) 0.0165

cis-11-hexadecenal 9.05 (5.50) 0.33 (0.24) 1.68(32.86) (1.15,2.46) 0.0072
ANKRD28 0.16 (0.54) -0.29 (0.46) 4.67(57.71) (1.28,17.03) 0.0197
CCDC92 -0.01 (0.75) -0.89 (0.75) 3.65(53.01) (1.55,8.61) 0.0031
DEFA3 -1.19 (1.55) 1.00 (1.57) 0.41(46.97) (0.23,0.73) 0.0022
FBXO32 0.25 (0.45) -0.09 (0.58) 3.76(60.34) (0.97,14.62) 0.0563
GRIA4 -0.34 (0.82) 0.89 (0.71) 0.19(45.33) (0.07,0.49) 0.0007
HDAC7 -0.04 (0.43) 0.10 (0.30) 0.39(63.52) (0.07,2.12) 0.2740
IFITM3 0.28 (0.67) 0.08 (0.62) 1.56(64.11) (0.6,4.05) 0.3635
LY6G6D -0.41 (1.08) 0.51 (1.00) 0.45(57.43) (0.23,0.89) 0.0211
MC1R 0.07 (0.74) -0.04 (0.42) 1.28(64.78) (0.49,3.33) 0.6160
MRPL18 0.13 (0.66) -0.92 (0.81) 5.47(47.2) (2.04,14.65) 0.0007
SPOCD1 0.27 (1.06) -0.69 (1.33) 1.91(58.35) (1.1,3.33) 0.0225
ST14 -0.39 (0.34) 1.43 (1.15) 0.09(30.98) (0.02,0.45) 0.0033
TOR1AIP2 -0.16 (0.63) 0.02 (0.19) 0.52(63.73) (0.16,1.74) 0.2913
TRIM16L 0.21 (0.59) -0.33 (0.16) 24.93(50.33) (2.47,251.47) 0.0064
UBXN7 -0.09 (0.67) 0.35 (0.41) 0.29(59.27) (0.09,0.93) 0.0378
VEGFB -0.11 (0.52) 0.23 (0.48) 0.29(60.54) (0.08,1.03) 0.0556
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Biomarkers AD
[mean (sd)]

Non-AD
[mean (sd)]

Crude ORa

(AIC)b (95% CI)c p-valued

IL-1β 48.19 
(12.15)

4.04 (1.88) 1.34(6.05) (1.07,1.68) 0.0110

IL-6 49.04 
(16.47)

2.71 (0.85) 1.3(5.97) (1.1,1.55) 0.0027

IL-12 30.08 
(17.27)

6.89 (4.94) 1.3(32.18) (1.1,1.53) 0.0023

IFN-γ 1.49 (1.14) 0.15 (0.06) 380322206.99 
(24.82)

(89.98, 
1607462564390182)

0.0111

IL-10 0.81 (0.55) 18.91 (5.95) 0.56(6.02) (0.39,0.81) 0.0019
IL-13 1.66 (1.28) 32.01 (6.28) 0.74(6.04) (0.62,0.89) 0.0013
IP-10 115.49 

(36.62)
31.26 (14.34) 1.25(6.86) (1.03,1.52) 0.0259

MCP-1 10.72 (4.09) 3.92 (2.47) 1.97(32.45) (1.31,2.97) 0.0011
MIP-1α 0.55 (0.38) 0.17 (0.07) 648.09(45.97) (7.03,59748.96) 0.0050

aCrude odds ratio (OR) was calculated based on exponential coefficient of each biomarkers.
bA lower value of Akaike Information criteria (AIC) is preferred as it indicates the model fits better. 
cThe variable is considered significant if the 95% confidence interval (95% CI for odds ratio) does not include 
1 in the interval range. 
dSimple Firth’s (1993) logistic regression was done for all individual biomarkers.

Supplementary Table 1 (continue)


